A helium flash is a very brief thermal runaway nuclear fusion of large quantities of helium into carbon through the triple-alpha process in the core of low-mass (between 0.8 () and 2.0 ) during their red giant phase. The Sun is predicted to experience a flash 1.2 billion years after it leaves the main sequence. A much rarer runaway helium fusion process can also occur on the surface of accreting white dwarf stars.
Low-mass stars do not produce enough gravity pressure to initiate normal helium fusion. As the hydrogen in the core is exhausted, some of the helium left behind is instead compacted into degenerate matter, supported against gravitational collapse by quantum mechanical pressure rather than thermal pressure. Subsequent hydrogen shell fusion further increases the mass of the core until it reaches temperature of approximately 100 million , which is hot enough to initiate helium fusion (or "helium burning") in the core.
However, a property of degenerate matter is that increases in temperature do not produce an increase in the pressure of the matter until the thermal pressure becomes so very high that it exceeds degeneracy pressure. In main-sequence stars, thermal expansion regulates the core temperature, but in degenerate cores, this does not occur. Helium fusion increases the temperature, which increases the fusion rate, which further increases the temperature in a runaway reaction, which quickly spans the entire core. This produces a flash of very intense helium fusion that lasts only a few minutes, but during that time, produces energy at a rate comparable to the entire Milky Way galaxy.
In the case of normal low-mass stars, the vast energy release causes much of the core to come out of degeneracy, allowing it to thermally expand. This consumes most of the total energy released by the helium flash, and any left-over energy is absorbed into the star's upper layers. Thus the helium flash is mostly undetectable by observation and is described solely by astrophysical models. After the core's expansion and cooling, the star's surface rapidly cools and contracts in as little as 10,000 years until it is roughly 2% of its former radius and luminosity. It is estimated that the electron-degenerate helium core weighs about 40% of the star mass and that 6% of the core is converted into carbon.
The explosive nature of the helium flash arises from its taking place in degenerate matter. Once the temperature reaches 100–200 million and helium fusion begins using the triple-alpha process, the temperature rapidly increases, further raising the helium fusion rate and, because degenerate matter is a good conductor of heat, widening the reaction region.
However, since degeneracy pressure (which is purely a function of density) is dominating thermal pressure (proportional to the product of density and temperature), the total pressure is only weakly dependent on temperature. Thus, the dramatic increase in temperature only causes a slight increase in pressure, so there is no stabilizing cooling expansion of the core.
This runaway reaction quickly climbs to about 100 billion times the star's normal energy production (for a few seconds) until the temperature increases to the point that thermal pressure again becomes dominant, eliminating the degeneracy. The core can then expand and cool down and a stable burning of helium will continue.
A star with mass greater than about 2.25 starts to burn helium without its core becoming degenerate, and so does not exhibit this type of helium flash. In a very low-mass star (less than about 0.5 ), the core is never hot enough to ignite helium. The degenerate helium core will keep on contracting, and finally becomes a helium white dwarf.
The helium flash is not directly observable on the surface by electromagnetic radiation. The flash occurs in the core deep inside the star, and the net effect will be that all released energy is absorbed by the entire core, causing the degenerate state to become nondegenerate. Earlier computations indicated that a nondisruptive mass loss would be possible in some cases, but later star modeling taking neutrino energy loss into account indicates no such mass loss.
In a one solar mass star, the helium flash is estimated to release about , or about 0.3% of the energy release of a type Ia supernova, which is triggered by an analogous ignition of carbon fusion in a carbon–oxygen white dwarf.
|
|